| 19 | 0 | 41 |
| 下载次数 | 被引频次 | 阅读次数 |
目的 探讨磁共振弥散加权成像(DWI)最小表观弥散系数(ADC)值在儿童脑胶质瘤分级诊断和肿瘤细胞增殖活性评估中的应用价值。方法 选取脑胶质瘤患儿95例,根据世界卫生组织中枢神经系统肿瘤分类标准分为低级别60例(Ⅰ级45例、Ⅱ级15例)和高级别35例(Ⅲ级21例、Ⅳ级14例)。术前接受MRI检查,在b值为1 000 s/mm2的ADC图像上测量肿瘤实性部分最小ADC值;取手术切除的病变组织标本,行免疫组织化学染色,计算Ki-67指数。结果95例儿童脑胶质瘤DWI最小ADC值为0.490×10-3~2.039×10-3 mm2/s,其中低级别儿童脑胶质瘤DWI最小ADC值为0.708×10-3~2.039×10-3 mm2/s、高级别儿童脑胶质瘤DWI最小ADC值为0.490×10-3~0.860×10-3 mm2/s。低级别儿童脑胶质瘤DWI最小ADC值高于高级别儿童脑胶质瘤DWI最小ADC值(Z=-7.840,P<0.05)。受试者工作特征曲线分析发现,DWI最小ADC值诊断儿童高级别脑胶质瘤的曲线下面积为0.981(95%CI:0.955~0.994,P<0.05),最佳截断值为0.982×10-3 mm2/s,此时其诊断儿童高级别脑胶质瘤的灵敏度为94.9%、特异度为100.0%。Spearman相关分析显示,DWI最小ADC值与儿童脑胶质瘤Ki-67指数呈负相关关系(r=-0.652,P<0.05)。结论 磁共振DWI最小ADC值对儿童脑胶质瘤分级诊断具有一定价值,并且还能反映肿瘤细胞增殖活性,对预后评估具有一定辅助作用。
Abstract:Objective To explore the application value of the minimum apparent diffusion coefficient(ADC) value of magnetic resonance diffusion-weighted imaging(DWI) in the grading diagnosis of glioma in children and the evaluation of tumor cell proliferation activity. Methods A total of 95 children with glioma were selected and divided into the low-grade(45 cases of grade Ⅰ and 15 cases of grade Ⅱ) and the high-grade(21 cases of grade Ⅲ and 14 cases of grade Ⅳ) according to the classification criteria of the central nervous system of the WHO. MRI examination was performed before the operation, and the minimum ADC value of the solid part of the tumor was measured on the ADC image with a b value of 1 000 s/mm2. The lesion tissue specimens resected by surgery were selected, pathological sections were prepared, immunohistochemical staining was performed, and the Ki-67 index was calculated. Results The minimum ADC value of 95 cases of pediatric glioma ranged from 0.490×10-3 to 2.039×10-3 mm2/s. Among them, the minimum ADC value of low-grade glioma in children was 0.708×10-3 to 2.039×10-3 mm2/s, and that of high-grade glioma in children was 0.490×10-3 to 0.860×10-3 mm2/s. The minimum ADC value of low-grade glioma in children was higher than that of high-grade glioma in children(Z=-7.840, P < 0.05). Receiver operating characteristic curve analysis revealed that the area under the curve of the minimum ADC value for diagnosing high-grade glioma in children was 0.981(95% CI: 0.955-0.994, P < 0.05), the optimal cut-off value was 0.982×10-3 mm2/s. At this time, its sensitivity for diagnosing high-grade glioma in children was 94.9% and its specificity was 100.0%. Spearman correlation analysis showed that the minimum ADC value was negatively correlated with the Ki-67 index of glioma in children(r =-0.652, P < 0.05). Conclusion The minimum ADC value in magnetic resonance DWI has certain value in the grading diagnosis of glioma in children, which can also reflect the proliferation activity of tumor cells, playing an auxiliary role in prognosis evaluation.
[1]周腾飞,康梦菲,何煜,等.基于增强MRI影像组学模型预测儿童胶质瘤分级[J].实用放射学杂志,2023, 39(5):798-801.
[2] COHEN A R. Brain tumers in children[J]. N Engl J Med, 2022,386(20):1922-1931.
[3]滕梁红,卢德宏.应重视儿童脑胶质瘤的分子病理诊断[J].中华医学杂志,2021, 102(19):1411-1416.
[4] BALE T A, ROSENBLUM M K. The 2021 WHO classification of tumors of the central nervous system:an update on pediatric low-grade gliomas and glioneuronal tumors[J]. Brain Pathol,2022, 32(4):e13060.
[5]杨学军,江涛,陈忠平,等.世界卫生组织中枢神经系统肿瘤分类的演变:1979—2021年[J].中国现代神经疾病杂志,2021, 21(9):710-724.
[6]杨学军.儿童胶质瘤诊断与治疗要点及进展[J].中国现代神经疾病杂志,2024, 24(9):695-700.
[7]许鹏飞,杨吉安,杨雪,等.儿童胶质瘤与成人胶质瘤的研究进展[J].医学研究杂志,2019, 48(2):5-11.
[8]加潇坤,彭冲奇,赵振宇,等.脑胶质瘤WHO中枢神经系统肿瘤分类(第五版)分析:附60例报告[J].中国现代神经疾病杂志,2022, 22(12):1086-1093.
[9]葛鑫,刘光耀,甘铁军,等.合成MRI联合弥散加权成像评估胶质瘤级别及肿瘤细胞增殖活性[J].中国医学影像技术杂志,2023, 39(2):171-175.
[10] HU X, XUE M, SUN S, et al. Combined application of MRS and DWI can effectively predict cell proliferation and assess the grade of glioma:a prospective study[J]. J Clin Neurosci, 2021,83:56-63.
[11] KANG X W, XI Y B, LIU T T, et al. Grading of glioma:combined diagnostic value of amide proton transfer weighted, arterial spin labeling and diffusion weighted magnetic resonance imaging[J]. BMC Med Imaging, 2020, 20(1):50.
[12] KHORASANI A, TAVAKOLI M B. Multiparametric study for glioma grading with FLAIR, ADC map, eADC map, T1 map,and SWI images[J]. Magn Reson Imaging, 2023, 96:93-101.
[13]王翅鹏,马廉亭,徐国政,等.表观扩散系数直方图在胶质瘤分级中的价值[J].实用放射学杂志,2019, 35(1):11-14.
[14]王艳敏,段文超,王伟伟,等.老年胶质母细胞瘤患者预后影响因素分析[J].中华医学杂志,2020, 100(2):121-124.
[15]高璐月,李元昊,李丽,等.多参数弥散磁共振成像评估脑胶质瘤IDH1基因型及肿瘤增殖活性[J].放射学实践,2023, 38(1):39-46.
[16]周佳楠,朱正阳,田传帅,等.多模态多参数磁共振成像在脑胶质瘤Ki-67表达中的研究[J].磁共振成像,2024, 15(5):34-40.
基本信息:
DOI:10.20258/j.cnki.1006-9011.2025.09.001
中图分类号:R739.41;R445.2
引用信息:
[1]苏晓然,陈琬,杨凯华,等.磁共振弥散加权成像最小ADC值在儿童脑胶质瘤分级诊断和肿瘤细胞增殖活性评估中的应用价值[J].医学影像学杂志,2025,35(09):1-4.DOI:10.20258/j.cnki.1006-9011.2025.09.001.
基金信息:
河南省医学科技攻关联合共建项目(编号:LHGJ20220759)